nature communications

Article

https://doi.org/10.1038/s41467-024-45234-x

Observing growth and interfacial dynamics of nanocrystalline ice in thin amorphous ice films

Received: 6 July 2023

Accepted: 16 January 2024

Published online: 30 January 2024

Check for updates

Minyoung Lee^{1,2,10}, Sang Yup Lee^{3,4,5,10}, Min-Ho Kang $\mathbb{O}^{6,7,10}$, Tae Kyung Won^{3,5}, Sungsu Kang^{1,2}, Joodeok Kim^{1,2}, Jungwon Park $\mathbb{O}^{1,2,8,9} \boxtimes \mathbb{C}$ Dong June Ahn $\mathbb{O}^{3,4,5} \boxtimes$

Ice crystals at low temperatures exhibit structural polymorphs including hexagonal ice, cubic ice, or a hetero-crystalline mixture of the two phases. Despite the significant implications of structure-dependent roles of ice, mechanisms behind the growths of each polymorph have been difficult to access quantitatively. Using in-situ cryo-electron microscopy and computational icedynamics simulations, we directly observe crystalline ice growth in an amorphous ice film of nanoscale thickness, which exhibits three-dimensional ice nucleation and subsequent two-dimensional ice growth. We reveal that nanoscale ice crystals exhibit polymorph-dependent growth kinetics, while hetero-crystalline ice exhibits anisotropic growth, with accelerated growth occurring at the prismatic planes. Fast-growing facets are associated with lowdensity interfaces that possess higher surface energy, driving tetrahedral ordering of interfacial H₂O molecules and accelerating ice growth. These findings, based on nanoscale observations, improve our understanding on early stages of ice formation and mechanistic roles of the ice interface.

Ice crystallization is a ubiquitous process having significant implications in various scientific and technological fields¹⁻⁷. The formation of structural polymorphs, including amorphous and crystalline forms of ice are influenced by conditions such as temperature, pressure, and preparation protocols^{4,8-19}. Hexagonal ice (ice I_h), the most common crystalline polymorph, is widely found in atmospheric conditions^{11,15}. Cubic ice (ice I_c) is another crystalline polymorph reported to coexist with ice I_h at a broad temperature range of 160–240 K^{13,15}. Despite the marginal difference in the thermodynamic favorability for the growths of ice I_c and I_h^{20,21}, these polymorphs exhibit distinct kinetic growth properties^{22,23}. This implies that there are other important factors that influence the nucleation and growth of ice crystals. Considering the important role of interfaces in the nucleation and growth of solids²⁴⁻²⁹, factors affecting ice growth are also likely relevant to interfacial characteristics of ice polymorphs^{12,13}. Indeed, there had been observations in which ice growth shows a dependency on the nature of interfaces in the environment. For instance, conditions within nanopores³⁰ or nanoscale water droplets^{22,31} have favored the formation of ice I_c structures over I_h.

¹School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea. ²Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul 08826, Republic of Korea. ³Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea. ⁴KU-KIST Graduate school of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea. ⁵The w:i Interface Augmentation Center, Korea University, Seoul 02841, Republic of Korea. ⁶Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si 14662, Republic of Korea. ⁷Department of Biotechnology, The Catholic University of Korea, Bucheon-si 14662, Republic of Korea. ⁸Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea. ⁹Advanced Institutes of Convergence Technology, Seoul National University, Suwon-si 16229, Republic of Korea. ¹⁰These authors contributed equally: Minyoung Lee, Sang Yup Lee, Min-Ho Kang. *e-mail: jungwonpark@snu.ac.kr; ahn@korea.ac.kr*