

Phase-Transition Nanowires

Direct identification of proteins, important but non-amplifiable biomolecules, is critical in advancing modern biomedicine technologies. J. Joo, D. J. Ahn, and co-workers explore the phase-transition phenomenon of conjugated polymer nanowires in response to the presence of protein particles on page 1154. Even a single polythiophene nanowire having capture aptamers functionalized on its surface responds to a specific interaction with target proteins. Such a unique phase-transition evokes enhancement of photoluminescence and generation of a local resonance Raman signal simultaneously, dramatically corresponding to protein concentration.

9/2016 WILEY-VCH

Protein Recognition by Phase Transition of Aptamer-Linked Polythiophene Single Nanowire J. Joo, D. J. Ahn, and co-workers

NANO

SI

Protein Recognition by Phase Transition of Aptamer-Linked Polythiophene Single Nanowire

Chunzhi Cui, Dong Hyuk Park, Hyun Choi, Jinsoo Joo,* and Dong June Ahn*

Conjugated polymers have made a profound impact and provided smart sensing systems with superior performance for biological application. These applications exploit the advantage of enhanced compatibility of conjugated polymers with biological materials.^[1–5] As a typical conjugated polymer, cationic polythiophene has been assessed as active systems for biological sensing.^[2,4] Most sensing events of conjugated polymers are easily quantified from optical signal changes, such as absorption,^[6] fluorescence,^[7–11] or electrical signal responses.^[12] These signal changes generally depend on conformational changes or the doping level of conjugated polymers.^[13,14]

There are also some other sensing methods upon surface-enhanced Raman spectroscopy effect^[15–18] which use Raman tags for indirect observation. In addition, for direct observation of the sensing probe (conjugated polymer) associated with bioevents, applying the resonance Raman scattering (RRS) effect^[19,20] is an operative option. By selecting the excitation laser energy, the RRS change of π -conjugated polymers induced by a bioevent can be directly observed. In recent years, many of the bioevents have been observed by the confocal fluorescence or Raman microcopy,^[21–23] and collecting confocal spectroscopic data with respect to a single nanoprobe becomes more important.^[11,14,17,24]

Dr. C. Cui, Dr. H. Choi, ^[+] Prof. D. J. Ahn Department of Chemical and Biological Engineering Korea University Seoul 136–701, Korea E-mail: ahn@korea.ac.kr Prof. D. H. Park Department of Applied Organic Materials Engineering	
Inha University	
Incheon 402–751, Korea	
Prof. J. Joo	
Department of Physics	
Korea University	
Seoul 136–713, Korea	
E-mail: jjoo@korea.ac.kr	
Prof. D. J. Ahn	
KU-KIST Graduate School of Converging Science and	Technology
Korea University	
Seoul 136–701, Korea	
^[+] Present address: Central Technology R&D Institute, Co., Ltd., Seongnam-si, Gyeonggi-do 463–400, Korea	Hyundai Oilbank

DOI: 10.1002/smll.201501908

In the previous report of our group, DNA sensing using doped poly (3-methylthiophene) (P3MT) single nanowire, in which the dopant moiety successfully mediated surface functionalization of oligonucleotide sequence, was performed by nanoscale photoluminescence (PL) observation in solid state.^[11] In this study, the dopant moiety was a successful mediator of surface functionalization of oligonucleotide sequence. Herein, for sensing another important but unamplifiable biomolecules, i.e. protein, we utilized phase-transition property of a single P3MT nanowire having aptamers functionalized on its surface. Our intention is to explore the phase-transition characteristics corresponding to specific interaction with target proteins. Doped light-emitting P3MT nanowires were electrically prepared by using tetrabutylammonium trifluoromethane sulfonic acid (TBACF₃SO₃) as a dopant based on an anodic alumina oxide (Al₂O₂) nanoporous template.^[25] The thrombin aptamer (T-aptamer) easily attached to the P3MT nanowire surface through electrostatic interaction (i.e., ionic binding) between sulfuric trioxide (SO_3^{-}) from the TBACF₃SO₃ dopant and the terminal amine (NH_3^+) modified aptamer.

Figure 1a shows the normalized UV/vis absorption spectra of the P3MT, P3MT/T-aptamer, and T-protein treated P3MT/T-aptamer nanowires, respectively. For the P3MT nanowires, a broad bipolaron peak was observed at ≈800 nm, implying a doped state, and the π - π * transition peak was observed at ≈385 nm.^[25] The P3MT nanowires functionalized with T-aptamer exhibited a marked decrease in the intensity of the doping-induced bipolaron peak. This suggests that the interaction between the SO₃⁻ group of the TBACF₃SO₃ dopant and NH₃⁺ group of the T-aptamer reduced the interaction between the cationic P3MT main chains and the negative counter ions. After interaction with T-protein, the π - π * transition peak was noticeably redshifted from \approx 385 to \approx 396 nm and new π - π * transition peaks were observed at \approx 550 and \approx 610 nm, respectively. It has been reported that the P3MT polymer chain adopts two helical configurations, i.e., a coil-like and a rod-like configuration. The coil-like configuration of the P3MT nanowire gives rise to an absorption peak at ≈ 385 nm, nonplanar with less π -conjugated and regionrandom like characteristics. However, the rod-like conformation gives rise to absorption peaks at \approx 550 and \approx 610 nm, and is more planar with, more π -conjugated, and region-regular like characteristics.^[26] Hence, the data indicate formation of relatively well-ordered configuration upon interaction of the P3MT/T-aptamer nanowires with T-protein. Figure 1b shows