

ARTICLE

Received 27 May 2015 | Accepted 19 Nov 2015 | Published 4 Jan 2016

DOI: 10.1038/ncomms10234

OPEN

Bio-recognitive photonics of a DNA-guided organic semiconductor

Seung Hyuk Back^{1,*}, Jin Hyuk Park^{2,*}, Chunzhi Cui^{2,*} & Dong June Ahn^{1,2,3}

Incorporation of duplex DNA with higher molecular weights has attracted attention for a new opportunity towards a better organic light-emitting diode (OLED) capability. However, biological recognition by OLED materials is yet to be addressed. In this study, specific oligomeric DNA-DNA recognition is successfully achieved by tri (8-hydroxyquinoline) aluminium (Alq₃), an organic semiconductor. Alq₃ rods crystallized with guidance from single-strand DNA molecules show, strikingly, a unique distribution of the DNA molecules with a shape of an 'inverted' hourglass. The crystal's luminescent intensity is enhanced by 1.6-fold upon recognition of the perfect-matched target DNA sequence, but not in the case of a single-base mismatched one. The DNA-DNA recognition forming double-helix structure is identified to occur only in the rod's outer periphery. This study opens up new opportunities of Alq₃, one of the most widely used OLED materials, enabling biological recognition.

¹KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea. ² Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea. ³ Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea. *These authors contributed equally to this work. Correspondence and requests for materials should be addressed to D.J.A. (email: ahn@korea.ac.kr).